Excited state polarizabilities of conjugated molecules calculated using time dependent density functional theory

نویسندگان

  • F. C. Grozema
  • H. T. Jonkman
  • L. D. A. Siebbeles
  • J. G. Snijders
چکیده

In this paper, time-dependent density functional theory ~TDDFT! calculations of excited state polarizabilities of conjugated molecules are presented. The increase in polarizability upon excitation was obtained by evaluating the dependence of the excitation energy on an applied static electric field. The excitation energy was found to vary quadratically with the field strength. The excess polarizabilities obtained for singlet excited states are in reasonable agreement with the experimental results for the shorter oligomers, particularly if the experimental uncertainties are considered. For longer oligomers the excess polarizability is considerably overestimated, similar to DFT calculations of ground state polarizabilities. Excess polarizabilities of triplet states were found to be smaller than those for the corresponding singlet state, which agrees with experimental results that are available for triplet polarizabilities. Negative polarizabilities are obtained for the lowest singlet Ag states of longer oligomers. The polarizability of the lowest Bu and Ag excited states of the conjugated molecules studied here are determined mainly by the interaction between these two states. Upon application of a static electric field a quadratic Stark effect is observed in which the lower Bu state has a positive excess polarizability and the upper Ag state exhibits a decrease in polarizability upon excitation. All results are explained in terms of a sum-over-states description for the polarizability. © 2001 American Institute of Physics. @DOI: 10.1063/1.1415085#

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Surface Tension Prediction of n-Alkanes by a Modified Peng-Robinson Equation of State Using the Density Functional Theory

Through this study, the ability of a modified Peng-Robinson (MPR) equation of state in predicting the surface tension of n-alkanes based on the density functional theory approach was investigated and compared with other studies. The interfacial layer thickness and the density profile were calculated simultaneously at different temperatures from triple point to near critical point using the modi...

متن کامل

Excited-State Parameters of One Intramolecular Cyclization by TD-DFT, CIS and ZINDO Methods

Using a time-dependent-density functional theory (TD-DFT), Configuration Interaction Singles (CIS) and Zerner’s Intermediate Neglect of Differential Overlap (ZINDO) methods, we have investigated the UV-Visible spectra of one new intramolecular cyclization at before and after intramolecular attack. All structures were optimized at the B3LYP/6-311++G** level while UV-Visible parameters were calcul...

متن کامل

Time-dependent density functional theory calculations of molecular static and dynamic polarizabilities, cauchy coefficients and their anisotropies with atomic numerical basis functions

Static and dynamic polarizabilities of a range of small first row compounds have been calculated with time-dependent density functional theory in the local spin-density approximation using numerical atomic basis sets. The results are compared to earlier computational work, in particular the work of Van Caillie and Amos [C. Van Caillie, R.D. Amos, Chem. Phys. Lett. 291 (1998) 71], as well as exp...

متن کامل

Structural and Electronic Properties of Novel π-Conjugated Aniline-based Oligomers: A Computational Study

Density functional theory (DFT) and time dependent DFT (TD-DFT) calculations were carried out for the oligomers of 3, 4- Ethylenedioxythiophene –Aniline (EDOT-Ani), 3, 4-Ethylenedithiafurane- Aniline (EDTF-Ani) and Thieno [3,4-b] benzene-Aniline (PITN-Ani). Structural parameters, electrical conductivity, spectral properties and electronic properties like ionization potential (IPs), (EAs), HOMO-...

متن کامل

Simulation of x-ray absorption near-edge spectra and x-ray fluorescence spectra of optically excited molecules.

The x-ray absorption near-edge spectra (XANES) and fluorescence spectra of molecules in the ground state and optically excited states are computed using time-dependent density functional theory and time-dependent Hartree-Fock theory. The calculated XANES spectra of optically excited methanol, benzonitrile, hydrogen sulphide, and titanium tetrachloride and the fluorescence spectra of optically e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001